CHAPTER 9 PRACTICE EXERCISES (*OPTIO	IAL)
--------------------------------------	------

What is the order of the given matrix?	$\int x - y + 3z = 5$
$[1 \ 2]$	10. $\begin{cases} x - y + 3z = 5\\ 2x + y = 4\\ y + z = 1 \end{cases}$
	(y+z=1
$\begin{bmatrix} 1 & 3 & 0 & 7 \\ 0 & 1 & 2 & 5 \end{bmatrix}$	11. $\begin{cases} 2x + y - z = 22\\ y + 2z = -1\\ x + z = 4 \end{cases}$
Write the augmented matrix for the system of equations.	$\begin{pmatrix} y + 2z - 1 \\ x + z = 4 \end{pmatrix}$
$\int x + 2y = 7$	$\int x - y + 2z = -4$
$\left\{egin{array}{l} x+2y=7\ -x-y=-7\end{array} ight. ight\}$	12. $\begin{cases} x - y + 2z = -4 \\ x + 2y - z = 5 \\ x + y + 3z = 5 \end{cases}$
$\begin{cases} 2x + y &= 4 \\ y + z = 6 \\ 2m + z = 10 \end{cases}$	(3x+2y) = 6
$\begin{cases} y+z=6\\ 2x + z = 10 \end{cases}$	13. $\begin{cases} 3x + 2y = 6\\ 2x + y - 3z = 4\\ x + y + z = 2 \end{cases}$
Perform the indicated row operations and state what th	(
operation accomplished.	14. $\begin{cases} 2x - 3y + 2z = -1\\ -12x + 6y - 42z = 17\\ 9x + 6y - 3z = 5 \end{cases}$
. Swap row 1 and 2: $\begin{bmatrix} 2 & 1 & 2 \\ 1 & 4 & -3 \end{bmatrix}$	$ \begin{array}{c} 14. \\ 9x + 6y - 42z = 17 \\ 9x + 6y + 3z = 5 \end{array} $
	Problem Solving
. Add -2 times 1st row to the 2nd row: $\begin{bmatrix} 1 & 3 & -7 \\ 2 & 6 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	15. An arcade uses colored tokens for its game machines. For \$20 you can purchase any of the three combinations of tokens: 14 gold, 20 silver, and 24 bronze; 20 gold, 15 silver, or 19 bronze;
. Multiply the 2nd row by $\frac{1}{7}$: $\begin{bmatrix} 1 & 3 & 5 \\ 0 & 7 & 21 \end{bmatrix}$	and 30 gold, 5 silver, and 13 bronze. What is the value of each color of token?
Is the matrix in row-echelon form?	Mixed Review
F1 9 47	16. (8-06) Use linear programming to find the maximum of
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$z=2x+3y$ given the constraints $\left\{egin{array}{c} 1\leq x\leq 5\ 2\leq y\leq 4 \end{array} ight.$
	17. (8-04) Find the partial fractions of $\frac{7x-11}{x^2-4x-5}$
$\begin{array}{cccccccc} 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{array}$	18. (6-05) Find the dot product: $(2, 5) \cdot (-1, 3)$
	19. (5-03) Verify the identity: $\frac{\sin^3 x}{1+\cos x} = \sin x(1-\cos x)$
Use Gaussian Elimination to solve the system of equations.	
	20. (2-07) Find the asymptotes of $\frac{2x^2+1}{x^2-1}$

9-02 Gaussian Elimination	
 What is the difference between row echelon form and reduced-row echelon form? Are the following matrices in row echelon form, reduced-row echelon form, or neither? 	a. $ \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} $ b. $ \begin{bmatrix} 1 & 2 & -3 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $

	1	0	2	3]
c.	0	1	1	0

9. $\begin{bmatrix} 2 & 3 & 1 \\ 1 & -4 & 2 \\ -2 & 0 & 5 \end{bmatrix}$ Use Gauss-Jordan Elimination to put the matrix in reducedrow echelon form. $\begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$ $3. \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$ $10. \begin{bmatrix} 2 & 5 & -3 & -13 \\ 1 & -2 & 4 & 20 \\ -1 & 10 & 9 & 24 \end{bmatrix}$

$\begin{bmatrix} 1 & 2 & -3 & 2 \end{bmatrix}$	$\begin{bmatrix} -1 & 10 & 9 & 24 \end{bmatrix}$
$4. \begin{bmatrix} 1 & 2 & -3 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 4 & 1 \end{bmatrix}$	Mixed Review
	11. (9-01) What is the order of $\begin{bmatrix} 4 & 9 & 0 & 3 \\ 2 & 4 & 1 & 2 \end{bmatrix}$?
$5. \begin{bmatrix} 1 & 2 & -3 & -3 \\ -2 & 3 & 2 & -25 \\ 1 & 2 & 0 & 11 \end{bmatrix}$	12. (8-06) Use linear programming to find the maximum of the

 $\begin{bmatrix} -1 & 2 & -3 & -11 \end{bmatrix}$

Solve using Gauss-Jordan Elimination.

Solve using Gauss-Jordan Elimination.	$\int 0 \le x \le 5$
(x+2y-z=-9)	Constraints: $\begin{cases} 0 \le x \le 5 \\ y \le x \\ y > 1 \end{cases}$
6. $\begin{cases} x + 2y - z = -9\\ x + y + 3z = 10\\ x - 2y - z = 3 \end{cases}$	$\bigcup y \geq 1$
	13. (8-04) Find the partial fractions of $\frac{4x+14}{x^2+6x+8}$.
y-2z=-4	
7. $\begin{cases} y - 2z = -4 \\ x + 4y - 3z = 21 \\ -2x + y + z = 13 \end{cases}$	14. (7-09) Write the polar equation of the conic with its focus at the pole and hyperbola with eccentricity $e = 2$ and directrix $x = -2$
3x + y - 5z = 27	15. (7-08) Find the maximums of $r = 2 \cos \theta$.
8. $\begin{cases} 3x + y - 5z = 27 \\ -x + 4y + z = -15 \\ x + 2z = -5 \end{cases}$	
x+2z=-5	

objective function given the constraints. Objective function: z = x - y

9-03 MATRIX OPERATIONS

1. Describe a scalar and give an example.		
Add or subtract the matrices.		
$2.\begin{bmatrix}1&9\\-3&-2\end{bmatrix}+\begin{bmatrix}0&-4\\-1&-7\end{bmatrix}$		
$3. \begin{bmatrix} -4 & 2 & 4 \\ 1 & -2 & -7 \end{bmatrix} + \begin{bmatrix} 8 & 2 \\ 4 & 5 \end{bmatrix}$		
$4. \begin{bmatrix} -2 & -3 \\ 1 & -2 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 0 & 4 \\ -5 & 6 \end{bmatrix}$		
Perform the indicated operations.		
$5. \begin{bmatrix} 2 & -1 \end{bmatrix} + 2 \begin{bmatrix} -5 & 5 \end{bmatrix}$		
$\begin{bmatrix} -3 & 2 & 6 \end{bmatrix}$ $\begin{bmatrix} -1 & 2 & -5 \end{bmatrix}$		

$61 \begin{bmatrix} -3 & 2 \\ 1 & 4 \end{bmatrix}$	$\binom{6}{-7} + 3 \left[\frac{-1}{4} \right]$	$2 \\ -3$	-500 - 500
$7.2\begin{bmatrix}3\\2\\0\end{bmatrix}-3$	$\begin{bmatrix} 0\\-3\\1 \end{bmatrix} + \begin{bmatrix} 4\\-2\\-1 \end{bmatrix}$		
M-141-1-141			

Multiply the matrices.

 $8. \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -2 \\ -1 & 3 \end{bmatrix}$ 9. [3 -2][7 9] $10. \begin{bmatrix} -1 & 0 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ -2 & 0 \end{bmatrix}$ $11. \begin{bmatrix} 5 & 1 \\ -2 & -4 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 6 \end{bmatrix}$ $12. \begin{bmatrix} 1 & 1 & 0 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 4 \\ -1 & 0 \end{bmatrix}$ 13. Use the matrices $A = \begin{bmatrix} 2 & -1 \\ 0 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$ to verify

that matrix multiplication has no commutative property by comparing the products AB and BA.

Problem Solving

14. The corners of a figure are at the coordinates A(0, 0), B(3, 1), C(4, 5), and D(1, 5). These can be written as the matrix

Use a graphing calculator to put the matrix in reduced-row echelon form.

A B C D	16. (9-02) Use Gauss-Jordan Elimination to solve
$\begin{bmatrix} 0 & 3 & 4 & 1 \end{bmatrix}$ where each column is a point. Jane wants to	$\int x+3y-2z=-8$
$\begin{bmatrix} 0 & 1 & 5 & 5 \end{bmatrix}$	y+5z=16
enlarge the figure by a factor of 5. Use scalar multiplication to	-x+z=8
find the coordinates of the enlargement.	$(-10\pi + 5u - 6)$
	17. (8-02) Use elimination to solve $\begin{cases} 10x + 3y = 0 \end{cases}$
15. A student is buying supplies for two different classes at school.	17. (8-02) Use elimination to solve $\begin{cases} 10x + 5y = 6\\ 30x + 20y = 17 \end{cases}$
Math class requires 20 pencils, 2 paper packs, and 1 textbook.	
English class requires 15 pencils, 2 paper packs, and 5	18. (6-05) Find the dot product $(2i - 3j) \cdot (4i + j)$
textbooks. Pencils are 25¢ each, paper packs are \$2 each, and	

textbooks are \$20 each. Write the supply requirements as a 19. (5-04) Solve $1 = 2 \sin(2\theta)$ on the interval $0 \le \theta < 2\pi$. matrix and the costs as another matrix. Show how to use matrix

20. (5-03) Verify the trigonometric identity $\sin \theta = \frac{\sin 2\theta}{2 \cos \theta}$ multiplication to find the total cost for each class.

Mixed Review

9-04 Inverse Matrices	
1. Multiply the matrices and determine if they are inverses. (Hir The product should be the identity matrix.) $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 2 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0 & 0 & 0.5 \\ 0 & -1 & 0 \end{bmatrix}$	at: 8. $\begin{cases} x - 3y = -6\\ 2x + y = -5 \end{cases}$ 9. $\begin{cases} 3x + 2y - 3z = 4\\ -4y + 2z = -6\\ -3x + z = -2 \end{cases}$
Find the inverse matrix.	Problem Solving
$2.\begin{bmatrix}2&-1\\3&1\end{bmatrix}$	10. Fred is investing \$5000 in two different accounts to stay diversified. One account pays 6% simple interest and the other
$3. \begin{bmatrix} 1 & 4 \\ -2 & 5 \end{bmatrix}$	pays 9% simple interest. Use an inverse matrix to determine how much he should invest in each account to earn an average of 8%.
$4. \begin{bmatrix} 2 & -1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & -1 \end{bmatrix}$	
$\begin{bmatrix} 0 & 0 & -1 \end{bmatrix}$ 5. $\begin{bmatrix} 1 & 3 & -2 \\ 1 & -2 & 1 \\ 4 & 0 & 2 \end{bmatrix}$	11. (9-03) $\begin{bmatrix} 2 & 5 & -7 \end{bmatrix} - 3 \begin{bmatrix} -1 & 10 & 3 \end{bmatrix}$ 12. (9-03) $\begin{bmatrix} 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & -2 \\ 0 & 5 \end{bmatrix}$
$6. \begin{bmatrix} 3 & 2 & -3 \\ 0 & -4 & 2 \\ -3 & 0 & 1 \end{bmatrix}$	13. (9-01) Add 2 times row 1 to row 3 and identify what it accomplished. $\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 3 & -2 & -5 \\ -2 & 8 & -6 & 2 \end{bmatrix}$
Use inverse matrices to solve the system of equations.	14. (6-03) If $\overrightarrow{m} = \langle 2, -1 \rangle$ and $\overrightarrow{n} = \langle -3, 1 \rangle$, find $2\overrightarrow{m} - \overrightarrow{n}$.
$7. \left\{egin{array}{l} 2x+2y=-2\ x-5y=8 \end{array} ight.$	15. (5-04) Solve 2 sin $x - \sqrt{2} = 0$ on the interval $0 \le x < 2\pi$.

9-05 Determinants of Matrices

1. Describe what the subscripts on the minors and cofactors mean, i.e. M_{35} or C_{42} .	$3. \begin{vmatrix} 3 & -1 \\ 6 & 7 \end{vmatrix}$
Evaluate the determinant using the shortcuts. 2. $\begin{vmatrix} 2 & 0 \\ 5 & 1 \end{vmatrix}$	$4. \begin{vmatrix} -2 & 6 \\ -5 & -4 \end{vmatrix}$

$5. \begin{vmatrix} 1 & 0 & 2 \\ 3 & 7 & -5 \\ -2 & 4 & 0 \end{vmatrix}$	$14. \begin{vmatrix} 1 & 0 & -2 & 1 \\ 0 & -1 & 2 & -1 \\ 3 & 2 & 0 & -2 \\ 0 & 5 & 1 & 1 \end{vmatrix}$
$ \begin{array}{c cccc} -1 & -2 & -3 \\ 3 & 2 & 1 \\ 4 & -4 & 5 \end{array} $	$\begin{vmatrix} -1 & 3 & 5 & 1 & 2 \\ 0 & 2 & 4 & 0 & 0 \\ 15. & 0 & 4 & -3 & 0 & 3 \\ 0 & 0 & 2 & 0 & 0 \\ 1 & -4 & -5 & 4 & -2 \end{vmatrix}$
$\begin{vmatrix} 1 & 2 & 1 \\ 0 & 5 & -2 \\ -4 & -1 & 3 \end{vmatrix}$	$\begin{vmatrix} 0 & 0 & 2 & 0 & 0 \\ 1 & -4 & -5 & 4 & -2 \end{vmatrix}$ Mixed Review
Find the (a) minor and (b) cofactor of the matrix $\begin{vmatrix} 2 & 1 & 4 \\ -1 & 5 & -2 \\ 0 & -1 & 3 \end{vmatrix}$	16. (9-04) Find the inverse of $\begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix}$.
8. a. M ₂₃ b. C ₂₃ 9. a. M ₁₃ b. C ₁₃ 10. a. M ₁₂ b. C ₃₂	17. (9-04) Use an inverse matrix to solve the system $\begin{cases} 2x + 3y = 5 \\ -4x + y = 11 \end{cases}$ 18. (9-03) Simplify $\begin{bmatrix} 2 & 1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 5 & -3 \\ 2 & 10 \end{bmatrix}$.

Evaluate the determinant using expansion by cofactors.

12.	$ \begin{array}{c} 1 \\ 0 \\ -5 \end{array} $	${3 \atop 0 \atop 1}$	$egin{array}{c c} -2 \\ 2 \\ 4 \end{array}$
13.	$^{-1}_{1}$	$\frac{4}{2}$	$-2 \\ 5 \\ 2$
	0	$^{-3}$	2

11. a. M₃₁ b. C₃₁

9-06 Applications of Matrices

Solve the system of equations using Cramer's Rule.	Determine if points are collinear.
$1. \begin{cases} x + 2y = -2 \\ -x + 4y = 5 \end{cases}$	8. (-2, -5), (1, 1), (3, 5)
(-x+4y=5)	9. (-4, 14), (-1, 5), (2, -4)
$2. \begin{cases} 2x - y = 5\\ 3x + 2y = 4 \end{cases}$	Use a determinant to find the equation of the line through the given points.
3. $\begin{cases} x + y = -1 \\ 2x - 3z = 8 \\ y + 3z = -5 \end{cases}$	10. (2, -1), (6, 2)
$\int_{0}^{2x-3z=-5} \frac{y+3z=-5}{y+3z=-5}$	11. (-4, 7), (1, 2)
$\left({\begin{array}{*{20}c} {x + 2y - 2z = 7} \end{array}} ight.$	12. (1, 3), (-8, 2)
$4. \begin{cases} x + 2y - 2z = 7\\ -2x + 3y - z = -6\\ x - y - z = 7 \end{cases}$	Hill Cipher
Use a determinant to find the area of the triangle with given vertices.	h the 13. Encode the message MATH FUN using $\begin{bmatrix} 2 & -3 \\ -2 & 1 \end{bmatrix}$.
5. (2, 3), (4, 6), (0, 1)	14. Decode the message 18, -27 , 16, -54 , 28, -42 , -22 , -7 using
6. (4, 1), (-2, 2), (3, 5)	the inverse of $\begin{bmatrix} 2 & -3 \\ -2 & 1 \end{bmatrix}$.
7. (-1, -1), (3, 1), (4, 6)	Problem Solving

19. (9-01) Use Gaussian Elimination to solve $\begin{cases} x+y+z=-1\\ y-z=9\\ 2y+z=0 \end{cases}$ 20. (8-05) Solve by graphing $\begin{cases} x-y \ge -2\\ x+y \le 6\\ y \ge x^2 - 6x + 9 \end{cases}$

15. Frankie is designing a new backyard. Part of the landscaping is a triangular garden plot that needs 2 inches of top soil. The coordinates of the vertices of the garden on the diagram of the backyard are (2, 5), (3, 6), and (2.5, 10) where the grid is measured in feet. How much top soil does Frankie need in cubic 19. (9-03) $\begin{bmatrix} 2 & 0 & -1 \\ 2 & -3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ -2 & -1 \end{bmatrix}$ inches?

20. (9-02) Put the matrix in reduced-row echelon form $\begin{bmatrix} 1 & 3 & -2 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$. Mixed Review 16. (9-05) Evaluate $\begin{vmatrix} 3 & -3 \\ 2 & 1 \end{vmatrix}$ 17. (9-05) Evaluate using expansion by cofactors $\begin{vmatrix} -4 & 2 & 0 \\ 1 & 3 & 0 \end{vmatrix}$. 4 0 2

9-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers. On this assignment round your answers to three decimal places unless otherwise directed. 1. Perform the indicated row operations on $\begin{bmatrix} 2 & 4 & -6 \\ -8 & 1 & 2 \end{bmatrix}$ 8. Find the inverse of $\begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix}$

$\begin{bmatrix} 0 & 3 & -4 \end{bmatrix}$ a. Add four time the 1st row to the 2nd row. b. Multiply the 1st row by $\frac{1}{2}$. 2. Solve the system with Gaussian Elimination $\begin{cases} x-3y+2z=5\\ -2x+y=-4\\ 2y-z=-3 \end{cases}$	9. Find the inverse of $\begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 4 \\ 2 & 1 & -1 \end{bmatrix}$ 10. Use an inverse matrix to solve $\begin{cases} x + z = 5 \\ -x + 2y + 4z = 11 \\ 2x + y - z = -4 \end{cases}$	
3. Is the matrix in reduced-row echelon form? $\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	11. Find $\begin{vmatrix} 2 & -1 \\ 4 & -3 \end{vmatrix}$ $\begin{vmatrix} 1 & -2 & -1 \end{vmatrix}$	
4. Put the matrix into reduced-row echelon form. $\begin{bmatrix} 1 & -2 & 5 & 2 \\ 1 & 3 & 1 & 5 \\ 2 & -2 & -1 & -1 \end{bmatrix}$	12. Find $\begin{vmatrix} 1 & -2 & -1 \\ 0 & -3 & 2 \\ 0 & 2 & 2 \end{vmatrix}$ using the shortcut.	
2 −1 0 1Perform the indicated operations.	13. Find $\begin{vmatrix} 3 & 1 & -2 \\ 4 & 2 & 0 \\ 1 & -2 & -1 \end{vmatrix}$ using the expansion by cofactors.	
$5. \begin{bmatrix} 2 & -1 & 3 \\ 0 & 7 & -3 \end{bmatrix} - \begin{bmatrix} 4 & 0 & -4 \\ 2 & -2 & 3 \end{bmatrix}$	14. Use Cramer's Rule to solve $\begin{cases} 2x+3y-z=0\\ y+z=0\\ -x+2y-z=-10 \end{cases}$	
$6. \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} + 2 \begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix}$	15. Find the area of triangle with vertices $(-3, 2)$, $(2, -1)$, $(3, 5)$.	
$7. \begin{bmatrix} 1 & 2 & -1 & -2 \\ 0 & 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ -1 & -2 \\ 2 & 5 \end{bmatrix}$	16. Use a determinant to find the equation of the line through $(3, 1)$ and $(-2, 4)$.	
$\begin{bmatrix} 0 & 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & 1 \end{bmatrix}$	17. Use $\begin{bmatrix} 2 & 3\\ -1 & 1 \end{bmatrix}$ to encode the message I GOT A.	

Answers		
9-01		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4. \begin{bmatrix} 2 & 1 & 0 & : & 4 \\ 0 & 1 & 1 & : & 6 \\ 2 & 0 & 1 & : & 10 \end{bmatrix}$	5. $\begin{bmatrix} 1 & 4 & -3 \\ 2 & 1 & 2 \end{bmatrix}$; Puts a 1 as leading coefficient in 1st row.

$6. \begin{bmatrix} 1 & 3 & -7 \\ 0 & 0 & 15 \\ 0 & 1 & 1 \end{bmatrix}; $ Puts a zero in 1st column of 2nd row. 7. $\begin{bmatrix} 1 & 3 & 5 \\ 0 & 1 & 3 \end{bmatrix}; $ Makes a leading 1 in 2nd row.	8. No 9. Yes 10. (2, 0, 1) 11. (7, 5, -3) 12. (-2 , 4, 1) 13. (2, 0, 0) 14. $\left(\frac{1}{2}, \frac{1}{3}, -\frac{1}{2}\right)$	15. Gold: \$0.50, Silver: \$0.35, Bronze: \$0.25 16. Max: 22 at (5, 4) 17. $\frac{3}{a+1} + \frac{4}{a-5}$ 18. 13 19. You have to figure it out. 20. VA: $x = \pm 1$; HA: $y = 2$
9-02		
1. reduced-row echelon form is row echelon form with any entries above a leading 1 turned to zeros using elementary row operations. 2. reduced-row echelon form; row echelon form; reduced-row echelon form; 1 0 3. 0 1 0 0 1 1 0 -7 0 4. 0 1 2 0 0 0 1	$\begin{bmatrix} 1 & 0 & 0 & 4 \\ 5. & 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ 6. (1, -3, 4) 7. (2, 10, 7) 8. (3, -2, -4) 9. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	10. $\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 4 \end{bmatrix}$ 11. 2 × 4 12. Maximum is 4 at (5, 1) 13. $\frac{3}{x^{2}+1} + \frac{1}{x^{x+4}}$ 14. $r = \frac{4}{1-2\cos\theta}$ 15. Maximums occur at $\theta = 0$ and $\theta = \pi$.
9-03	F 10 J	
1. A single number, not a matrix or vector, such as 3. 2. $\begin{bmatrix} 1 & 5 \\ -4 & -9 \end{bmatrix}$ 3. Not possible 4. $\begin{bmatrix} -4 & -4 \\ 1 & -6 \\ 9 & 1 \end{bmatrix}$ 5. $\begin{bmatrix} -8 & 9 \\ 0 & 4 & -21 \\ 11 & -13 & 7 \end{bmatrix}$	7. $\begin{bmatrix} 10\\ 1\\ -4 \end{bmatrix}$ 8. $\begin{bmatrix} -1 & -1 \end{bmatrix}$ 9. Not possible 10. $\begin{bmatrix} -4 & -3\\ 12 & 6 \end{bmatrix}$ 11. $\begin{bmatrix} 1\\ -22\\ 18\\ 18\\ \end{bmatrix}$ 12. $\begin{bmatrix} 2 & 5\\ -9 & 2 \end{bmatrix}$	$ \begin{aligned} &13. AB = \begin{bmatrix} 0 & 6 \\ -4 & 0 \end{bmatrix}, BA = \begin{bmatrix} 2 & -7 \\ 4 & -2 \end{bmatrix} \\ &14. A' = (0, 0), B' = (15, 5), C' = (20, 25), D' = (5, 25) \\ & Pencil \ Paper \ Book \ Pencil \ Solution \\ &Eng \ \begin{bmatrix} 10 & 2 & 1 \\ 15 & 2 & 5 \end{bmatrix} \ Book \ \begin{bmatrix} 80. \\ 82 \\ 82 \\ 16 & (-5, 1, 3) \\ 17. \ \left(\frac{7}{10}, -\frac{1}{5}\right) \\ 18. 5 \\ 19. \ \frac{7}{12}, \frac{13}{12}, \frac{137}{12} \\ 20. \ Show work \end{aligned} $
9-04		
1. Show work, yes they are inverses 2. $\begin{bmatrix} \frac{1}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{2}{5} \end{bmatrix}$ 3. $\begin{bmatrix} \frac{2}{13} & -\frac{1}{13} \\ \frac{1}{2} & \frac{1}{5} & \frac{1}{5} \\ 0 & \frac{1}{3} & \frac{1}{5} \\ 0 & 0 & -1 \end{bmatrix}$	$5. \begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{1}{14} \\ -\frac{1}{7} & -\frac{5}{7} & \frac{3}{14} \\ -\frac{4}{7} & -\frac{6}{7} & \frac{5}{14} \\ -\frac{3}{3} & -\frac{1}{6} & -\frac{2}{3} \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -1 & -\frac{1}{2} & -1 \end{bmatrix}$ $6. \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \\ -1 & -\frac{1}{2} \\ -1 & -\frac{1}{2} \end{bmatrix}$	$\begin{array}{l} 8, (-3, 1) \\ 9, (1, 2, 1) \\ 10, 81666.67 \text{ at } 6\%, $3333.33 \text{ at } 9\% \\ 11, [5 -25 -16] \\ 12, [1 -12] \\ 13, [0 3 -2 -5] \\ 0, 14 -6 6 \\ 15, \frac{\pi}{4}, \frac{3\pi}{4} \end{array}; \text{ Made a 0 in the 3rd row.}$
9-05		
1. The first number is the row and the second number is the column which are crossed out to create the new matrix. Take the determinant of that matrix. 2. 2 3. 27 4. 38 5. 72 6. 68 7. 49 82; 2 9. 1; 1 10. 0; 0		20.
9-06	A.Y.	12 00
1. $(-3, \frac{1}{2})$ 2. $(2, -1)$ 3. $(4, -5, 0)$ 4. $(3, -1, -3)$ 5. 1 6. $\frac{23}{2}$ 7. 9 8. Yes	9. Yes 10. $3x - 4y = 10$ 11. $x + y = 3$ 12. $x - 9y = -26$ 13. $24, -38, 24, -52, -12, 6, 14, -49$ 14. I WON IT 15. 648 in ³ 16. 9	$\begin{array}{cccc} 1728\\ 18.(4,-1)\\ 19.\begin{bmatrix} 4 & 3\\ -8 & -9 \end{bmatrix}\\ 1 & 0 & 0 & -24\\ 20.\begin{bmatrix} 0 & 1 & 0 & 11\\ 0 & 0 & 1 & 4 \end{bmatrix}$
9-Review		

1. a. $\begin{bmatrix} 2 & 4 & -6 \\ 0 & 17 & -22 \\ 0 & 3 & -4 \end{bmatrix}$ b. $\begin{bmatrix} 1 & 2 & -3 \\ -8 & 1 & 2 \\ 0 & 3 & -4 \end{bmatrix}$ 2. $(1, -2, -1)$ 3. No, the 2 and 5 should be zeros. $\begin{bmatrix} 1 & 0 & 0 & \frac{20}{19} \\ 0 & 1 & 0 & \frac{21}{19} \\ 0 & 0 & 1 & \frac{12}{19} \end{bmatrix}$	$5 \begin{bmatrix} -2 & -1 & 7 \\ -2 & 9 & -6 \end{bmatrix}$ $6 \begin{bmatrix} -1 & 7 \\ 4 & 7 \end{bmatrix}$ $7 \begin{bmatrix} -3 & -11 \\ -3 & -3 \end{bmatrix}$ $8 \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$	$\begin{array}{c} 9. \left[\begin{array}{c} \frac{6}{11} & -\frac{1}{11} & \frac{2}{11} \\ -\frac{7}{11} & \frac{3}{11} & \frac{5}{11} \\ \frac{5}{11} & \frac{1}{11} & -\frac{2}{11} \end{array} \right] \\ 10. \left(1, -2, 4 \right) \\ 112 \\ 1210 \\ 13. 18 \\ 14. \left(4, -2, 2 \right) \\ 15. \frac{32}{12} \\ 16. 3x + 5y = 14 \\ 17. 18, 27, -1, 36, 40, 60, 2, 3 \end{array}$
---	--	---